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A large number of methods for the analysis of point pattern data have been developed
in a wide range of scientific fields. First-order statistics describe large-scale variation in
the intensity of points in a study region, whereas second-order characteristics are
summary statistics of all point-to-point distances in a mapped area and offer the
potential for detecting both different types and scales of patterns. Second-order
analysis based on Ripley’s K-function is increasingly used in ecology to characterize
spatial patterns and to develop hypothesis on underlying processes; however, the full
range of available methods has seldomly been applied by ecologists. The aim of this
paper is to provide guidance to ecologists with limited experience in second-order
analysis to help in the choice of appropriate methods and to point to practical
difficulties and pitfalls. We review (1) methods for analytical and numerical
implementation of two complementary second-order statistics, Ripley’s K and the O-
ring statistic, (2) methods for edge correction, (3) methods to account for first-order
effects (i.e. heterogeneity) of univariate patterns, and (4) a variety of useful standard
and non-standard null models for univariate and bivariate patterns. For illustrative
purpose, we analyze examples that deal with non-homogeneous univariate point
patterns. We demonstrate that large-scale heterogeneity of a point-pattern biases
Ripley’s K-function at smaller scales. This bias is difficult to detect without explicitly
testing for homogeneity, but we show that it can be removed when applying methods
that account for first-order effects. We synthesize our review in a number of step-by-
step recommendations that guide the reader through the selection of appropriate
methods and we provide a software program that implements most of the methods
reviewed and developed here.
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Over the last decade, there has been an increasing

interest in the study of spatial patterns in ecology

(Turner 1989, Levin 1992, Grimm et al. 1996, Gustafson

1998, Dale 1999, Liebhold and Gurevitch 2002). Ecol-

ogists study spatial pattern to infer the existence of

underlying processes (Perry et al. 2002). For example,

spatial patterns of plants may result from different

processes and forces such as seed dispersal, intraspecific

competition, interspecific competition, disturbance, her-

bivory, or environmental heterogeneity (Sterner et al.

1986, Kenkel 1988, Barot et al. 1999, Dale 1999, Jeltsch

et al. 1999, Klaas et al. 2000), which may operate at

different spatial scales. Analysis of the resulting spatial

structure can indicate the existence of underlying

Accepted 21 August 2003

Copyright # OIKOS 2004
ISSN 0030-1299

MINI-
REVIEW

Minireviews provides an opportunity to summarize existing knowledge of selected
ecological areas, with special emphasis on current topics where rapid and significant
advances are occurring. Reviews should be concise and not too wide-ranging. All key
references should be cited. A summary is required.

OIKOS 104: 209!/229, 2004

OIKOS 104:2 (2004) 209



processes, e.g. identification of regularity within a spatial
pattern may indicate competition. However, care is
required in inferring causation because many different
processes may generate the same spatial pattern.

An important example of a spatial pattern is a point
pattern, a data-set consisting of a series of mapped point
locations in some study region. A number of methods
have been used for quantifying the characteristics of
point patterns (Ripley 1981, Diggle 1983, Upton and
Fingleton 1985, Stoyan and Stoyan 1994, Bailey and
Gatrell 1995, Dale 1999, Dale et al. 2002). First-order
statistics describe the intensity l of a point pattern, and
large-scale variation in the intensity l of the points in the
study region. In contrast, second-order statistics are
based on the distribution of distances of pairs of points
(Ripley 1981) and they describe the small-scale spatial
correlation structure of the point pattern. Some of the
second-order statistics, such as the commonly used
Ripley’s K-function or the pair-correlation function g,
use the information on all inter-point distances (Ripley
1976, 1977, 1981, Diggle 1983, Bailey and Gatrell 1995)
and provide more information on the scale of the pattern
than do statistics that use nearest neighbor distances
only (i.e. Diggle’s nearest neighbor functions G or F;
Diggle 1983, Barot et al. 1999). Ripley’s K function and
the pair-correlation function describe the characteristics
of the point pattern over a range of distance scales, and
can therefore detect mixed patterns (e.g. dispersion at
smaller distances and aggregation at larger distances).
This is an important property because virtually all
ecological processes are scale dependent and their
characteristics may change across scales (Levin 1992,
Wiens et al. 1993, Gustafson 1998). Over the last several
years, methods based on Ripley’s K-function have
undergone a rapid development (Haase 1995, Podani
and Czárán 1997, Coomes et al. 1999, Goreaud and
Pélissier 1999, Dale and Powell 2001, Haase 2001,
Pélissier and Goreaud 2001, Dungan et al. 2002, Free-
man and Ford 2002, Perry et al. 2002) and are now being
widely used, especially in plant ecology (Haase et al.
1996, 1997, Ward et al. 1996, Martens et al. 1997, Hanus
et al. 1998, Larsen and Bliss 1998, Pancer-Koteja et al.
1998, Wiegand et al. 1998, 2000, Barot et al. 1999, Chen
and Bradshaw 1999, Coomes et al. 1999, Jeltsch et al.
1999, Mast and Veblen 1999, Kuusinen and Penttinen
1999, Bossdorf et al. 2000, Camarero et al. 2000, Condit
et al. 2000, Grau 2000, He and Duncan 2000, Kuulu-
vainen and Rouvinen 2000, Lookingbill and Zavala
2000, Haase 2001, Fehmi and Bartolome 2001). Some
examples can be found in other fields of ecology as well
(O’Driscoll 1998, Wiegand et al. 1999, Klaas et al. 2000,
Schooley and Wiens 2001, Revilla and Palomares 2002).

The function K(r) is the expected number of points in
a circle of radius r centered at an arbitrary point (which
is not counted), divided by the intensity l of the pattern.
The alternative pair correlation function g(r), which

arises if the circles of Ripley’s K-function are replaced by
rings (Ripley 1981, Stoyan and Stoyan 1994, Stoyan and
Penttinen 2000, Dale et al. 2002), gives the expected
number of points at distance r from an arbitrary point,
divided by the intensity l of the pattern. Of special
interest is to determine whether a pattern is random,
clumped, or regular. Significance is usually evaluated by
comparing the observed data with Monte Carlo envel-
opes from the analysis of multiple simulations of a null
model. The common null model is complete spatial
randomness (CSR), but other null models may be
appropriate depending on the biological question asked.
Points in a point-pattern may contain information in
addition to position, often referred to as marks (e.g. a
species identifier, a life stage identifier, or whether the
individual survived or died), and many biological ques-
tions concern the relationship between points with
different marks (e.g. facilitation or competition among
adult trees and seedlings, or shrubs and grasses).
Bivariate extensions of Ripley’s K and the pair-correla-
tion function provide appropriate methods to address
such questions.

Practical difficulties and pitfalls in univariate analysis
arise due to edge effects (i.e. sample circles or rings fall
partly outside the study region and cannot be evaluated
without bias) or if the pattern is not homogenous (i.e.
the intensity l of the pattern is not approximately
constant in the study region). Any spatial dependence
that is indicated by the estimated K function of a
heterogeneous pattern could be due more to first-order
effects rather than to interaction between the points
themselves. In this case a null model that acknowledges
the overall first-order heterogeneity has to be adopted to
examine possible second-order effects. Alternatively, one
may examine homogeneous sub-regions of the hetero-
geneous pattern. The latter requires methods to delineate
homogeneous sub-regions that may be in general
arbitrarily shaped, and methods of edge correction for
arbitrarily shaped study regions. The analysis of bivari-
ate point patterns is more complicated than that of
univariate patterns because various other null models in
addition to CSR become possible. The appropriate null
model for bivariate analysis must be selected carefully
based on the biological hypothesis to be tested.

In this article, we review current methods in point
pattern analysis based on second-order statistics and
address practical difficulties and pitfalls of this techni-
que. More specifically, we suggest the use of the O-ring
statistic as useful complement to the commonly used
Ripley’s K-function, we review methods for (1) edge
correction, (2) analytical and numerical implementation
of second-order statistics, (3) delineating homogeneous
sub-regions, and we thoroughly discuss null models for
univariate and bivariate point patterns. For illustrative
purpose, we show several examples that deal with non-
homogeneous univariate patterns, and as synthesis of
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our article we compile a set of step-by-step recommen-
dations that guide through the explorative process of
second-order statistics. Additionally we provide our own
software that enables ecologists to use most methods
reviewed here. It can be requested from the first author.

Methods

Ripley’s K-function and the O-ring statistic

For a homogeneous and isotropic point pattern, the
second-order characteristics depend only on distance r,
but not on the direction or the location of points. An
appropriate geometry is therefore to adopt circular
shapes, such as the circles of Ripley’s K-function, as a
basis for the spatial statistics. Curiously, the alternative
approach of using rings (or annulus) instead of circles,
i.e. the pair-correlation function g(r) or the O-ring
statistic O(r)"/lg(r) (Wiegand et al. 1999), has rarely
been used in ecology (but see Galiano 1982, Wiegand et
al. 2000, Condit et al. 2000, Revilla and Palomares
2002). Using rings instead of circles (Fig. 1) has the
advantage that one can isolate specific distance classes,
whereas the cumulative K-function confounds effects at
larger distances with effects at shorter distances (Getis
and Franklin 1987, Penttinen et al. 1992, Condit et al.
2000). Note that the K-function and the O-ring statistic
respond to slightly different biological questions. The
accumulative K-function can detect aggregation or
dispersion up to a given distance r and is therefore
appropriate if the process in question (e.g. the negative
effect of competition) may work only up to a certain
distance, whereas the O-ring statistic can detect aggrega-

tion or dispersion at a given distance r. The O-ring
statistic has the additional advantage that it is a
probability density function (or a conditioned probabil-
ity spectrum, Galiano 1982) with the interpretation of a
neighborhood density, which is more intuitive than an
accumulative measure (Stoyan and Penttinen 2000). We
therefore argue that the toolbox of second-order spatial
analysis should include not only the cumulative K-
function, but also the complementary O-statistic.

Ripley’s K-function

The bivariate K-function K12(r) is defined as the
expected number of points of pattern 2 within a given
distance r of an arbitrary point of pattern 1, divided by
the intensity l2 of points of pattern 2:

l2K12r"E[#(points of pattern 25r

from an arbitrary point of pattern 1)] (1)

where # means ‘‘the number of’’, and E[ ] is the
expectation operator. Under independence of the two
point patterns, K12(r)"/pr2, without regard to the
individual univariate point patterns. It can be difficult
to interpret K12(r) visually. Therefore, a square root
transformation of K(r), called L-function (Besag 1977),
is used instead:

L12(r)"
!

ffiffiffiffiffiffiffiffiffiffiffiffiffi

K12(r)

p

s

#r

#

(2)

This transformation removes the scale dependence of
K12(r) for independent patterns and stabilizes the
variance (Ripley 1981). Values of L12(r)!/0 indicate
that there are on average more points of pattern 2 within
distance r of points of pattern 1 as one would expect
under independence, thus indicating attraction between
the two patterns up to distance r. Similarly, values of
L12(r)B/0 indicate repulsion between the two patterns up
to distance r. The estimated L-function L̂12(r) is calcu-
lated for a sequence of distances r and the results of
L̂12(r) are then plotted against distance.

Theoretically, distribution theory could be used in
determining confidence envelopes for null models of
point-patterns. However, this approach quickly becomes
analytically intractable if edge effects for irregularly
shaped study regions are considered, or if null models
other than CSR are considered. Therefore, the more
practical alternative is to use Monte Carlo simulations of
a realization of the stochastic process underlying the
specific null model in constructing confidence envelopes
around the null model (Upton and Fingleton 1985,
Bailey and Gatrell 1995). Each simulation generates an
L̂12(r) function, and approximate n/(n$/1)%/100% con-
fidence envelopes are calculated from the highest and
lowest values of L̂12(r) taken from n simulations of the
null model. For example, a 95% confidence envelope
requires n"/19 simulations (Bailey and Gatrell 1995,

Fig. 1. Numerical implementation of the L- function and the
O-ring statistic for an irregularly shaped study region encircled
by the dashed line. Points of pattern 2 are represented by closed
circles, the focal point i of pattern 1 as open circle. Note that we
approximate circles and rings with the underlying grid structure.
(A) For numerical implementation of Ripley’s bivariate L-
function we count the number of points of pattern 2 inside the
part of the circles around point i of pattern 1 which falls inside
the study region (i.e. the gray shaded area), and the number of
cells within this area. (B) For implementation of the bivariate O-
ring statistic we count the number of points of pattern 2 inside
the part of the ring around point i of pattern 1 which falls inside
the study region (i.e. the gray shaded area), and the number of
cells within this area.
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Haase 1995, Martens et al. 1997). A more accurate
approach is to use the 5th-lowest and 5th highest L̂12(r):
In this case, 99 randomizations provide 5% confidence
envelopes (Stoyan and Stoyan 1994, Wiegand et al.
2000). If L̂12(r) has some part outside of that envelope, it
is judged to be a significant departure from the null
model.

The univariate K-function K(r) is calculated in a
manner analogous to the bivariate K function by setting
pattern 1 equal to pattern 2. In this case the focal points
of the circles are not counted. For a homogeneous
Poisson process (complete spatial randomness CSR),
K(r)"/pr2 and L(r)"/0. L(r)!/0 indicates aggregation of
the pattern up to distance r, while L(r)B/0 indicates
regularity of the pattern up to distance r.

The O-ring statistic

The mark-correlation function g12(r) is the analogue of
Ripley’s K12(r) when replacing the circles of radius r by
rings with radius r, and the O-ring statistic O12(r)"/l2

g12(r) gives the expected number of points of pattern 2 at
distance r from an arbitrary point of pattern 1 (Fig. 1B):

O12(r)"l2g12(r)"E[#(points of pattern 2

at distance r from an arbitrary

point of pattern 1)] (3)

The mark-correlation function g12(r) is related to
Ripley’s K-function (Ripley 1981, Stoyan and Stoyan
1994):

g12(r)"
dK12(r)

dr =(2pr) (4)

We obtain O12(r)"/l2 for independent patterns,
O12(r)B/l2 for repulsion, whereas O12(r)!/l2 for attrac-
tion.

In practice, the calculation of the O-ring statistic
involves a technical decision on the width of the rings.
Clearly, the use of rings that are too narrow will produce
jagged plots as not enough points will fall into the
different distance classes. This problem does not occur
for the accumulative K-functions. On the other hand, the
O-ring statistic will lose the advantage that it can isolate
specific distance classes if the rings are too wide.

Again, the univariate O-ring statistic O(r) is calculated
by setting pattern 2 equal to pattern 1. For CSR, O(r)"/

l, O(r)!/l indicates aggregation of the pattern at
distance r, and O(r)B/l regularity.

Edge correction

Edge effects may arise in calculating point-pattern
statistics due to the fact that data points lying outside
the study region (ones that could potentially influence
the pattern inside the study region) have not been

sampled and are unknown. This means that sample
circles or rings used in calculating point-pattern statistics
may fall partially outside the study region and will
produce a biased estimate of the point-pattern unless a
correction is applied. One method used to avoid edge
effects is to sample an additional buffer zone, with width
r equal to the largest scale used in the analysis,
surrounding the main study area. Only points lying
inside the main study area are utilized as centers in
calculating the point-pattern statistics (Haase 1995).
Clearly, the shortcoming of this method is that only
the points within the inner plot can be analyzed and for
large scales a large buffer zone must be utilized. For
rectangular study regions, a second method using a
toroidal edge correction can be employed to avoid edge
effects. This involves replicating the observed pattern
eight times and then surrounding the original pattern
with the eight copies to form a 3%/3 array (Ripley 1979,
1981, Upton and Fingleton 1985, Haase 1995). The
justification of toroidal edge correction is that the
observed rectangle represents a random sample of all
the rectangles that may have been observed, and there-
fore the best guess on the appearance of the adjacent
rectangles is that they look identical to the sampled
rectangle (Upton and Fingleton 1985). Utilizing a buffer
zone or toroidal edge correction is only necessary if the
degree of edge in the analysis is high and a large
proportion of the area sampled around focal points lies
outside the main study area, e.g. for transect data or
small plots (Haase 1995). However, if most of the area
sampled around focal points falls within the study area,
a third form of edge correction, employing a weighting
that corrects for the proportion of the sample area lying
outside the study area, can be utilized as explained below
(Ripley 1981, Bailey and Gatrell 1995, Haase 1995,
Goreaud and Pélissier 1999).

Analytical and numerical implementation

There are basically two approaches to estimate K12(r)
and O12(r) from the data: an analytical approach, and a
numerical approach. Analytical approaches use geo-
metric formulas to calculate weights that correct for
the area of the circles lying outside the study region
(Haase 1995, Goreaud and Pélissier 1999), whereas
numeric approaches use an underlying grid of cells for
implementation of Eq. 1 and 3 and do not require edge
correction.

Analytical approach.

The common analytical estimator for K12(r) was pro-
posed by Ripley (1976, 1981). It is based on all distances
dij between the ith point of pattern 1 and the jth point of
pattern 2 and is given by:
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K̂12(r)"
A

n1n2

X

n1

i"1

X

n2

j"1

Ir(dij)

wij

(5)

where n1 and n2 are the number of points of pattern 1
and 2, respectively, A is the area of the study region, Ir is
a counter variable [Ir(dij) "/1 if dij5/r, and Ir(dij)"/0
otherwise], and wij is a weighting factor to correct for
edge effects. The weight wij is the proportion of the area
of a circle centered at the ith point of pattern 1 with
radius dij that lies within the study region. For example,
if only half of the circle falls in the study region, Eq. 5
counts effectively two points for each point encountered
in the incomplete circle. This edge correction is based on
the assumption that the region surrounding the study
region has a point density and distribution pattern
similar to the nearby areas within the boundary (Getis
and Franklin 1987, Haase 1995) and is in some ways
analogous to a toroidal edge correction. Because a point
close to the border of the study region is weighted more
than a point far away from the border, K̂12(r) may be
biased for larger r if narrow and long study regions are
analyzed (e.g. transects). The common rule of thumb to
avoid this effect is that one should not go to a lag
distance longer than half the narrowest dimension. The
analytical estimator of the mark-correlation function
g12(r) is the analogue to Eq. 5, but the counter variable
must account for a ring with width w: Ir

w(dij)"/1 if r#/w/
25/dij5/r$/w/2 and Ir(dij)"/0 otherwise.

Precise formulas of wij depend on the shape of the
study region and on the location of point i in relation to
the boundaries. The derivation of analytical formulas for
wij sometimes requires quite complex algorithms and can
be computationally intensive. Ripley (1982), Haase
(1995), and more recently Goreaud and Pélissier (1999)
reviewed current formulas for edge correction of Ripley’s
K. Because of the complexity of analytical formulas of
wij, mostly simple circular or rectangular study regions
have been used for experimental plots. However, shapes
that are more complex are sometimes necessary because
of obstacles in the study site, or it may be necessary to
omit some parts of a heterogeneous study region to
obtain a homogeneous pattern. The shape of the final
study region can thus be very complex. Only recently,
Goreaud and Pélissier (1999) proposed a general method
to deal analytically with study regions of complex shape,
by excluding triangular surfaces from rectangular or
circular initial shapes.

Numerical approach

Numerical methods require division of the study region
into a grid of cells (Fig. 1). Selection of an appropriate
cell size is constrained by the sampling error of the
coordinates of the points that defines a minimum cell
size, and by computational time for larger grids. A
resolution coarser than the sampling error can be
selected; this will depend on the minimum resolution

of distance classes necessary for responding to the
scientific question.

A numerical estimator of K12(r) could determine the
weights of Eq. 5 by using the underlying grid. However,
the numerical method allows for a slightly different
approach that does not ‘‘look’’ outside the study region
and therefore does not require edge correction.

This can be achieved by dividing the mean number of
points within circles by the mean area of these circles,
but counting only points and area inside the study
region:

l2K̂12(r)"pr2

1

n1

X

n1

i"1

Points2[Ci(r)]

1

n1

X

n1

i"1

Area[Ci(r)]

(6)

Ci(r) is the circle with radius r centered on the ith point
of pattern 1, n1 the total number of points of pattern 1 in
the study region, the operator Points2[X] counts the
points of pattern 2 in a region X, and the operator
Area[X] determines the area of the region X. To
implement Eq. 6 we marked each cell (x, y) with an
identifier S(x, y) [S(x, y)"/1 if the cell with coordinates
(x, y) is inside the boundaries of the study region,
otherwise S(x, y)"/0] and with two additional marks
P1(x, y) and P2(x, y) that give the number of points of
pattern 1 and pattern 2 lying within the cell, respectively.
Using these definitions, the numerator of Eq. 6 becomes:

Points2[Ci(r)]"
X

all x

X

all y

S(x; y)P2(x; y)Ir(xi; yi; x; y) (7)

where (xi, yi) are the coordinates of the ith point of
pattern 1, and the counter variable Ir defines the circle
with radius r that is centered at the ith point of pattern 1:

Ir(xi; yi; x; y) "
1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x#xi)
2 $(y#yi)

2
q

5r

0 otherwise

8

>

<

>

:

(8)

The denominator of Eq. 6 is calculated analogously to
Eq. 7, but it counts cells instead of points:

Area[Ci(r)]"z2
X

all x

X

all y

S(x; y)Ir(xi; yi; x; y) (9)

where z2 is the area of one cell. Because Eq. 7 and 9
include the identifier S(x, y) of the study region, only
points and cells are counted that are inside the bound-
aries of the study region. Therefore, the study region can
be of any complex shape accommodated by the under-
lying grid. Using Eq. 6, our numerical estimator of the
L-function is given by:
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L̂12(r)"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

K12(r)

p

s

#r"r

!
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Points2[Ci(r)]

X
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#

v

u

u

u

u

u

u

u

t

#1

#

(10)

where A is the area of the study region, and n2 the
number of points of pattern 2 inside the study region.

The analogous numerical estimate for the bivariate O-
ring statistic is:

Ô
w

12(r)"

X

n1

i"1

Points2[R
w
i (r)]

X

n1

i"1

Area[Rw
i (r)]

(11)

where Ri
w(r) is the ring with radius r and width w

centered in the ith point of pattern 1. The numerator and
the denominator and of Eq. 11 are the same as given in
Eq. 7 and 9, respectively, but the counter variable Ir for
circles has to be replaced by a counter variable Ii

w that
defines a ring with radius r and width w around the ith
point with coordinates (xi, yi):

Iw
r (xi; yi; x; y)"

1 if r#
w

2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x#xi)
2$(y#yi)

2
q

5r$
w

2

0 otherwise

8

>

<

>

:

(12)

Methods for delineating homogeneous sub-regions

Analysis of heterogeneous point patterns is difficult
because most methods related to Ripley’s K-function
have been developed for homogeneous point patterns.
The classical exploratory approach for univariate point
patterns is to compare a given point pattern to the null
model of a homogeneous Poisson process which gen-
erates patterns consistent with complete spatial ran-
domness (CSR). However, for heterogeneous patterns
this null model is not appropriate because first-order
effects may interfere with second-order effects. In the
examples section (‘‘Virtual aggregation and bias in the
univariate L-function’’) we show e.g. that analysis of
univariate point patterns with larger gaps (i.e. areas
without points or with a low density of points) can lead
to severe misinterpretation of the spatial structure of the
pattern if the null model is CSR. In the case of
heterogeneous patterns, CSR might be represented by a
heterogeneous Poisson process, a Cox process, or a

Poisson cluster process (Diggle 1983, Upton and Fin-
gleton 1985, Bailey and Gatrell 1995). However, the
corresponding mathematical tools for analytical imple-
mentation of these null models are complicated (Batista
and Maguire 1998, Pélissier and Goreaud 2001). One
possibility to retain the methods for homogeneous
patterns for the analysis of heterogeneous patterns is to
define homogeneous sub-regions and to analyze the
spatial structure within these separately (Pélissier and
Goreaud 2001). This requires methods for delineating
irregularly shaped sub-regions within heterogeneous
patterns, or methods for detection of clusters or gaps
in point patterns.

Dale and Powell (2001) presented an approach for
detecting gaps and clusters in point patterns that is
closely related to Ripley’s K-function. They did not
center the circles on points of the pattern (as is done
when calculating the K-function), but on circles that go
through all three points of any trio of points in the map
(circumcircle method). Circles that include large gaps
will have many fewer observed than expected points and
the circles that neatly enclose patches will have many
more than expected (Dale and Powell 2001). Another
method to detect and measure clusters in spatially
referenced count data was presented in Perry et al.
(1999). This method works through equating the degree
of spatial pattern in an observed arrangement of counts
to the minimum effort that the individuals in the
population would need to expend to move to a
completely regular arrangement in which abundance
was equal in each sample unit. In practice, this effort is
equated with the minimum distance required to move to
complete regularity (Perry et al. 1999).

A simple exploratory approach that tests for homo-
geneity relies on the fact that the number of points in
plots of size W of homogeneous point patterns follows a
Poisson distribution. For a point pattern with intensity l
a test for homogeneity involves comparison of the
estimated frequency distribution P̂k(lW) [of finding k
points in an arbitrary plot of size W] with the expected
frequency distribution under homogeneity, a Poisson
distribution

Pk(lW)"
(lW)k

k!
e#lW (13)

with mean lW. Depending on the kind of heterogeneity,
there are different possibilities to use a combined
analysis of expected and estimated frequency distribu-
tion together with an estimate of the first-order intensity
for delineation of homogeneous sub-regions. We discuss
two cases of simple heterogeneity.

Detecting a mixture of two Poisson processes

If a point pattern comprises two internally homogeneous
sub-regions with different intensities, the estimated
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frequency distribution will show two overlapping peaks
(Fig. 2A). Pélissier and Goreaud (2001) proposed visual
inspection of P̂k(lW) to find the critical value of k
("/ksep) that separates both Poisson distributions. In a
next step, they used spatial interpolation techniques to
approximate the heterogeneous first-order intensity l
and constructed contour lines with the critical intensity
lsep"/ksep/W to delineate the two homogeneous sub-
regions.

Detecting gaps

If the point pattern is internally homogeneous but
contains a gap (i.e. a larger region with low density of
points), a plot of size W may be part of the gap if it
contains less points than one would expect under
homogeneity. The minimal number of points kmin in
the plot that would be still probable under homogeneity
can be estimated by accumulating the ‘‘left tail’’ of the
expected Poisson distribution until a small value p0 is
reached:

X

kmin#1

k"0

Pk(lW)5p0 and
X
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k"0

Pk(lW)!p0
(14)

Thus, there is only a probability p0 that a plot of size W
contains fewer than kmin points, and a plot that contains
B/kmin points is probably part of a gap. An estimate of
the first-order intensity l(x, y), and contour lines with
lmin"/kmin/W can then be used to separate the gaps
from the homogeneous region. Theoretically, this ap-
proach does not require an estimate of P̂k(lW); but in
practice, P̂k(lW) is needed as an exploratory tool (see
examples section ‘‘Delineating homogeneous sub-
regions’’). Note that this approach can be applied
analogously for detecting clusters. In this case, one has
to consider the upper tail of the Poisson distribution
instead of the lower tail.

Implementation

Formal statistical tests of the estimated frequency
distribution P̂k(lW) against its theoretical distribution
require independence of the sample (i.e. non-overlapping
plots) for estimation of P̂k(lW): Because we aim to
remove larger-scale variation in the intensity l(x, y) we
will tend to select larger plot sizes W. On the other hand,
larger non-overlapping plots will produce smaller sample
sizes, which can be a problem if the study region is small.
A pragmatic, but less rigorous, approach for exploratory
analysis is the use of overlapping plots. However,
this requires some methods to account for non-
independence. For example, Pélissier and Goreaud
(2001) proposed to use a buffer zone between the two
homogeneous sub-regions to account for unclear transi-
tion between the dense and sparse parts of the study
region.

The numerical approach suggests a simple estimator
of the non-constant first-order intensity l(x, y):

l̂R
(x; y)"

Points[C(x;y)(R)]

Area[C(x;y)(R)]
(15)

where C(x, y)(R) is a circular moving window with radius
R that is centered in cell (x, y). This is basically a kernel
estimate with fixed bandwidth R (Diggle 1985, Bailey
and Gatrell 1995). As edge correction, the number of
points in an incomplete circle is divided by the propor-
tion of the area of the circle that lies within the study
region. Using Eq. 15 has the advantage that a fitting
procedure for contour lines is not required, and the
moving window procedure can easily be performed for
several spatial scales R.

A rigorous method for detecting gaps would place e.g.
adjacent (rectangular) plots over the study region and
remove all plots containing fewer points than kmin.

Fig. 2. Delineating homogeneous sub-regions for cases of
simple heterogeneity. (A) Two sub-regions with different first-
order intensities ll and lh (ll"/0.01, lh"/0.05) of equal size.
The broken line shows the expected frequency distribution of
the number of points in plots of size W under overall
homogeneity, and the solid line the frequency distribution
resulting from the mixture of the two Poisson processes. The
arrow indicates the value of ksep that separates the two sub-
regions (Pélissier and Goreaud 2001). (B) Homogeneous pattern
with a gap. The solid line shows the frequency distribution that
results from a homogeneous pattern with lhom"/0.03 that
contains a gap covering 12.5% of the study region. The broken
line shows the expected frequency distribution under overall
homogeneity (l"/0.026). Under a homogeneous pattern with
l"/0.026, circles of size W"/500 would contain 5 or less points
with probability 0.009, thus kmin"/6 for p0"/0.01.
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However, the plot size W must be sufficiently large,
otherwise gaps cannot be distinguished from empty plots
that would occur under homogeneity with a probability
P0(lW). Equation (14) can be used to calculate the plot
size Wmin for which empty plots will occur with (a low)
probability p0:

Pk"0(lW)"e#lWmin "p0 which yields Wmin

"#ln(p0)=l (16)

Non-overlapping plots of area W!/Wmin will make the
delineation of gaps very coarse if the overall density l"/

n/A is low (n is the number of points in the study region
with area A). As a pragmatic alternative, we propose in
the examples section ‘‘Delineating homogeneous sub-
regions’’ a combined analysis of the estimated frequency
distribution P̂k and the moving-window estimate l̂R

of
l(x, y).

Null models

The keys for successful application of Ripley’s K-
function and the O-ring statistic are the selection of an
appropriate null model that responds to the specific
biological question asked, and correct interpretation of a
given departure of the data from the null model. One
approach to find an appropriate null model is based on
the mathematical form of K(r) and g(r), which are
known explicitly (or as an integral) for a number of
potentially useful classes of spatial point processes
(Ripley 1981, Diggle 1983, Upton and Fingleton 1985,
Bailey and Gatrell 1995, Dixon 2002). This is a two-stage
process. First, inspection of the estimated K̂(r) may
suggest plausible models for the underlying point
process, and the parameters that control the process
can be fitted through comparison of the expected and
estimated K-function (e.g. Diggle 1983, Batista and
Maguire 1998, Dixon 2002). Second, approximate con-
fidence envelopes for the K-function based on the fitted
models are constructed by Monte Carlo simulations of
the stochastic process with the parameter estimates
obtained by the fitting procedure. This approach has
mainly been adopted by statisticians interested in spatial
point processes, but the mathematical tools can be
complicated, especially for parameter fitting and correct-
ing edge effects. As a consequence, ecologists have
mostly used the simplest case only, the null model of
CSR (but see Diggle 1983, Batista and Maguire 1998).
The numerical approach facilitates simple implementa-
tion of a variety of null models that e.g. account for first-
order heterogeneity, or are adapted to specific biological
questions. Because there are fundamental differences
between the univariate and the bivariate case, we will
review null models separately for the univariate and the
bivariate case.

Null models for univariate point pattern
Complete spatial randomness

The simplest and most widely used null model for
univariate point patterns is complete spatial randomness
(CSR) that can be implemented as a homogeneous
Poisson process. Homogeneous means that the first-
order intensity l is constant over the study region (there
are no first-order effects), and Poisson means that the
probability of finding k points in an area W follows a
Poisson distribution with mean lW. Thus, any point of
the pattern has an equal probability of occurring at any
position in the study region, and the position of a point
is independent of the position of any other point (i.e.
points do not interact with each other). Due to practical
problems with edge correction, CSR has mostly been
applied in study regions of simple rectangular or circular
shape (but see Goreaud and Pélissier 1999). If a
homogeneous pattern is spatially restricted by obstacles
or environmental heterogeneity (e.g. differences in soil),
the appropriate null model is CSR, but applied only
within an irregularly shaped study region. In the
examples section ‘‘Virtual aggregation and bias in the
univariate L-function’’ we show that in this case
application of CSR in a rectangular study region that
encompasses the pattern can lead to severe misinterpre-
tation of the second-order structure of the pattern. If
appropriate software for edge correction of irregularly
shaped study regions is not available, smaller regularly
shaped sub-regions of the pattern have to be analyzed.
However, this may reduce the sample size considerably.
Note that the numerical approach (Eq. 7 and 9) can deal
with any irregularly shaped study region accommodated
by the underlying grid.

Heterogeneous Poisson process

If a pattern is not homogeneous, the null model of CSR
is not suitable for exploration of second-order charac-
teristics, and a null model accounting for first-order
effects has to be used to reveal ‘‘true’’ second-order
effects. The heterogeneous Poisson process is the sim-
plest alternative to CSR if the pattern shows first-order
effects. The constant intensity of the homogeneous
Poisson process is replaced by a function l(x, y) that
varies with location (x, y), but the occurrence of any
point remains independent of that of any other. The
intensity function l(x, y) determines the process com-
pletely, and numerical implementation of this null model
is a matter of finding an appropriate estimate of the
intensity function.

The numerical approach suggests a simple method to
implement the heterogeneous Poisson process using the
moving-window estimate l̂R

of the intensity function
l(x, y) (Eq. 15): a provisional point is placed at a
random cell (x, y) in the study area, but this point is only
retained with a probability given through l̂R

(x; y): This
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procedure is repeated until n points are distributed. The
moving window estimator l̂R

(x; y) involves a decision on
an appropriate radius R of the moving window. Because
the bandwidth R is the scale of smoothing, possible
departure from this null model may only occur for scales
rB/R, and for small moving windows it will closely
mimic the original pattern, whereas a large moving
window approximates CSR.

Note that there will always be a subjective component
involved in the decision as to whether or not, and at what
scales, the pattern is heterogeneous. In general, this
decision depends on spatial scale: as compared with the
size of the study region, fine-scale variations are
generally considered as elements of structure and
broad-scale variations as heterogeneity (Pélissier and
Goreaud 2001). In some cases, the nature of the data and
the strength of trends in the observed pattern may make
such judgment relatively straightforward. In other cases,
this may be difficult and open to debate and interpreta-
tion.

Typical biological situations for application of a
heterogeneous Poisson process are presence of exogen-
ous factors (e.g. soil, topography, rocks, etc.) or obstacles
that cause irregularly shaped study regions. In fact, a
simple variant of the heterogeneous Poisson process can
be used as alternative to avoid edge correction for
homogeneous point patterns in irregularly shaped study
regions: the intensity l(x, y) is zero outside the study
region and constant inside.

Random labeling

Random labeling is a somewhat different approach to
correct for underlying environmental heterogeneity that
can be used where a ‘‘control’’ pattern is available to act
as surrogate for the varying environmental factor. The
assumption of univariate random labeling is that the
pattern of controls was created by the same stochastic
process as the primary pattern (‘‘cases’’). Therefore, the
n1 cases represent a random sub-sample of the joined
pattern of the n2 control points and n1 case points. The
test is devised by computing the univariate K-function
for the observed cases, then randomly re-sampling sets
of n1 points from the (n1$/n2) points of the cases and
controls to generate the confidence limits. Note that this
null model makes sense only if there are many more
controls than cases. Univariate random labeling is
closely related to bivariate random labeling (see below)
and has been applied to investigate competitive thinning
(Kenkel 1988, Moeur 1993, Batista and Maguire 1998)
under the null hypothesis that the survivors are no
different from a random draw of the initial cohort.

Poisson cluster process

The Poisson cluster process explicitly incorporates a
clustering mechanism. Parent events form a CSR process

and each parent produces a random number of offspring
according to a probability distribution f( ). Offspring are
spatially distributed around their parent according to
some bivariate probability density g( ). The final pattern
consists of the offspring only. To avoid edge effects, the
parents must be simulated over a region larger than the
study region but the offspring falling outside the study
region are lost (Bailey and Gatrell 1995). If the number
of offspring follows a Poisson distribution and the
location of the offspring, relative to the parent indivi-
dual, have a bivariate, Gaussian distribution, the off-
spring follow a Neyman-Scott process (Diggle 1983,
Cressie 1991, Batista and Maguire 1998, Dixon 2002).
The K-function and the pair-correlation function for the
Neyman-Scott process are given by:

K(r;s; r)"pr2$
1 # exp(#r2=4s2)

r

g(r;s; r)"1$
exp(#r2=4s2)

4ps2r
(17)

where r is the intensity of the parent process, and s2 the
variance of the Gaussian distribution. Because s is the
standard deviation of the distance between each off-
spring and its parents, the cluster size yields "/2s.
For scales r below the cluster size (i.e. rB/2s) the K-
function can be approximated by K(r)"/r2p$/r2/(4rs2)
(Diggle 1983), and the L-function is approximated
by

L(r;s; r):r
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Because the parameters r and s are unknown, they must
be fit by comparing the empirical K̂(r) with the
theoretical K-functions (Diggle 1983, Batista and Ma-
guire 1998, Dixon 2002). Rough initial estimates for r
and s can be obtained by using two properties of the L-
function: the maximal value of L̂(r)occurs for a value of r
slightly above the cluster size 2s, and the L-function
increases almost linearly for rB/2s with slope given in
Eq. 18.

Hard-core process

A hard-core process is the simplest extension of CSR to
describe small-scale regularity. Dixon (2002) reviews
analytical formulas of the K-function under different
hard-core processes. For numerical simulation of a hard-
core process, CSR is ‘‘thinned’’ by deletion of all pairs of
points a distance less than d apart. A ‘‘soft-core’’ variant
of this inhibition process distributes provisional points
due to CSR and retains a point that is closer than
distance d from an already accepted point with a
probability that varies within distance d (B/d) between
1 at d"/d and 0 at d"/0. A typical biological situation
for application of a hard-core process is a hypothesized
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negative effect of competition that may work only up to
a certain distance d. A hard-core process is also
appropriate if spatially extended objects, such as non-
overlapping plants of finite size, are analyzed. In this
case, the usual point-approximation will introduce a bias
because the plants are constrained by their diameters to
be at least a certain distance apart. As a consequence,
the point approximation will indicate e.g. regularity but
this appearance of regularity may conceal significant
small-scale aggregation (Simberloff 1979, Prentice and
Werger 1985).

Null models for bivariate point pattern

Interpreting a bivariate K-function or O-ring statistic
can be confusing because it differs from the univariate
case. In the univariate case, visualization of the pattern
can provide an intuitive idea of the first and second-
order properties of a pattern. However, in the bivariate
case we analyze the spatial relation between two spatial
patterns at different spatial scales where each pattern
individually can have a complicated spatial structure.
Confusion may also arise because there is not one simple
and intuitive null model such as CSR, and because a null
model based on CSR (i.e. randomization of both
patterns) leads to an inadequate test of the bivariate
pattern.

The relationship between two patterns can be con-
trasted to two conceptually different null models:
independence and random labeling. The null model of
random labeling assumes that both patterns were created
by the same stochastic process, and each of the two
patterns taken separately represents random ‘‘thinning’’
of the joined pattern. In contrast, the null model of
independence assumes that the two patterns were
generated by two independent processes (e.g. one process
generated the locations of shrubs, and the other process
generated the locations of grass tufts). Departure
from independence indicates that the two processes
display attraction or repulsion, regardless of the uni-
variate pattern of either group by itself. The dis-
tinction between independence and random labelling
requires some care and consideration (Dixon 2002).
When there is no relationship between two processes,
the two approaches lead to different expected values of
K12(r) and O12(r), and to different procedures for
generating null models. Failure to distinguish be-
tween random labelling and independence may lead to
the analysis of data by methods which are largely
irrelevant to the problem at hand (Diggle 1983). Ran-
dom labelling and independence are equivalent only if all
the component processes are homogeneous Poisson
processes.

Independence

Testing for independence is more difficult than testing
for CSR in the univariate case because inferences are
conditional on the second-order structure of each
pattern (Dixon 2002). This is because the theoretical
values of K12(r) and O12(r) do not depend on CSR of the
component patterns and therefore no assumption can
be made about models for either of the component
patterns. Thus, the null model of CSR is not appropriate
to test for independence; the separate second-order
structures of the patterns need to be preserved in their
observed form in any simulation of the null model, but
one has to break the dependence between the two
patterns. One way of achieving this is by simulations
that involve random shifts of the whole of one compo-
nent pattern relative to the other. In practice, a
rectangular study region is treated as a torus where the
upper and lower edges are connected and the right and
left edges are connected.

Random labeling

In the case of random labelling we ask not about the
interaction between two processes, but about the process
that assigns labels to points, conditioning the observed
locations of the points of the joined pattern. Therefore,
the null model of random labelling requires no assump-
tions about the specific form of the two underlying
component processes. Because both component patterns
taken separately represent ‘‘random thinning’’ of the
joined pattern a numerical implementation of random
labelling involves repeated simulations using the fixed
n1$/n2 locations of pattern 1 and 2, respectively, but
randomly assigning ‘‘case’’ labels to n1 of these locations
(Bailey and Gatrell 1995). From their definition, K-
functions (and g-functions) are invariant under random
thinning and therefore we would expect K12(r)"/

K21(r)"/K11(r)"/K22(r). This suggests that a useful
way of investigating departures from random labelling
is to assess the significance of differences amongst
estimates of these functions (Bailey and Gatrell 1995).
Each pairwise difference evaluates different biological
effects. The difference K̂11(r)#K̂12(r) for example eval-
uates whether points of type 1 tend to be surrounded by
other points of type 1, while K̂11(r)#K̂22(r) evaluates
whether one pattern is more (or less) clustered than the
other (Dixon 2002).

Typical biological situations for the application
of bivariate, random labelling are cases where an
underlying pattern is imposed on both patterns, i.e.
a heterogeneous environment. Random labelling has
not been applied much in ecological applications
(but see Dixon 2002), but it is frequently used in
the epidemiological context to account for the
natural variation in the background population
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(i.e. ‘‘population at risk’’, Bailey and Gatrell
1995).

Space-time clustering

Except for random thinning, all null models discussed so
far are concerned with the properties of point patterns
without explicit reference to time. However, we might be
interested in how spatial patterns change over time !/

that is, whether events cluster in space over time. For
example, in plant ecology the locations of plants in a
study region might be re-sampled with a certain time lag
e.g. for determining mortality and recruitment rates or
for studying successional patterns. In order to assess the
spatio-temporal relationships among plants, one can
regard the vegetation maps at different times as being
different patterns and analyze these spatio-temporal
patterns using the bivariate K-function or O-ring
statistic. Space-time clustering has been investigated
e.g. by Wiegand et al. (1998) in an analysis of a model
that simulated vegetation dynamics of colonizer and
successor species in a South African shrubland. Patterns
of space-time clustering are of particular interest in
this system where cyclic succession produced strong
time lags in the establishment of successor species
dependent upon the earlier establishment by colonizer
species. Especially in an epidemiological context, spatial
data on e.g. occurrence of a disease might not stem
from snap-shots of the disease at different times,
but occurrence might be continuously mapped with
a time label attached. In this case, one can define
the ‘space-time’ K-function K(r, t) analogously to Eq.
1. If the processes operating in time and space
are independent, K(r, t) should be the product of
separate space and time K-functions (Bailey and Gatrell
1995).

Antecedent conditions

In some cases antecedent conditions may influence the
choice of an appropriate null model. For example, in
space-time clustering we need to keep the locations of
the earlier pattern fixed, and randomize only the
later pattern following an appropriate null model.
Similarly, for investigating the relationship between
adult trees (pattern 1) and seedlings (pattern 2) an
appropriate null model to test for repulsion or attraction
would be to randomize the locations of the seedlings
(because they could potentially be found at the entire
study region) and to keep the locations of the trees fixed.
Randomizing the locations of the trees would be
inappropriate because they did not change their position
during the development of the seedlings. Moreover,
possible repulsion or attraction between seedlings and
trees might be obscured by randomizing the locations of
the trees.

Examples

Virtual aggregation and bias in the univariate L-
function

If a pattern is not homogeneous, the null model of CSR
is not suitable for exploration of second-order charac-
teristics. This is because large-scale, first-order effects
introduce a systematic bias in the univariate K-function,
not only at larger scales, but also at smaller scales. In this
case, an observed departure from CSR could well be due
to first order effects rather than to second order effects
(Bailey and Gatrell 1995). This can be understood
intuitively, when imagining a point pattern that com-
prises a single internally homogeneous cluster in the
center of the study region (Fig. 3A). In this case the local
density of points in the cluster will be higher than the
overall density of points in the entire study region. As a
consequence, there are always more points in the closer
neighborhood of other points than expected under
homogeneity, and the K-function will indicate aggrega-
tion at smaller scales even if the pattern is random inside
the cluster. We call this phenomenon ‘‘virtual aggrega-
tion.’’

To demonstrate this intuitive idea mathematically, we
imagine a univariate point pattern with overall intensity
l that forms an internally random cluster covering the
proportion c of the study region. There are no points
outside the cluster. Because sub-regions of the cluster
satisfy CSR, the probability O(r) of finding a point at the
closer neighborhood r of other points will be approxi-
mately constant, i.e. O(r)"/gl with g"/1/c. To obtain
the corresponding K-function we integrate Eq. 4 using
g(r)"/O(r)/l"/g (Eq. 3) and obtain K(r)"/pgr2, which
yields:

L(r)"r(
ffiffiffi

g
p

#1) (19)

Thus, under virtual aggregation we observe an L-
function that increases at smaller scales linearly, and
the extent of virtual aggregation, given through the slope
ffiffiffi

g
p

#1; is inversely related to the fraction c of the study

region covered by the cluster. Note that for smaller scales
(i.e. scales r below the cluster size) the functional form of
L(r) under virtual aggregation is the same as under a
Neyman-Scott process (Eq. 18 and 19). This is not
surprising because virtual aggregation is caused by
clustering. The difference is that the cluster size under
virtual aggregation is defined to be large, while the
Neyman-Scott process can be applied for any cluster
size.

The L-function can increase under virtual aggregation
only over a limited range of scales; it will start to drop if
a notable proportion of circles overlap the part of the
study region outside the cluster. Finally, the L-function
will approach zero for very large scales r because then all
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points will be located within each circle, i.e. K(r)"/pr2,
and L(r)"/0.

If the pattern shows virtual aggregation but addition-
ally true second-order effects (i.e. a non constant pair-
correlation function g(r) at scales rB/r1, and g(r)"/g for
r!/r1), integration of Eq. 4 yields

K(r)"g
r1

0

2pr’g(r’)dr’$g
r

r1

2pr’gdr?

"K(r1)#pgr2
1 $pgr2 (20)

and the L-function becomes:

L(r)"#r$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K(r1)

p
#gr2

1 $gr2

s

(21)

which collapses back to Eq. 19 if there are no second-

order effects (i.e. K(r1)"/pgr1
2). Note that Eq. 21

approximates the impact of virtual aggregation only

for a limited range of scales r, and for large scales the

assumption g(r)"/g does not hold because in this case

the circles will overlap the gap. Figure 4 shows how

second-order effects at small scales (i.e. a given K(r1)"/

pr1
2, Eq. 21) impact the L-function at higher scales.
Weak virtual aggregation increases the local density

O(r) at smaller scales r only slightly and it should

therefore not seriously affect the outcome of second-

order analysis. However, the problem is that the Monte

Carlo test for Ripley’s K will indicate highly significant

aggregation because the K-function is a cumulative

measure where aggregation at smaller scales influences

the estimate at larger scales (Eq. 21). The Monte Carlo

Fig. 3. Univariate analysis of a point pattern, and comparison between Ripley’s L-function and the O-ring statistic. (A) map
showing the rectangular study region and the point pattern. The study region was divided into a grid of 198%/191 cells, and the
pattern comprises n"/287 points. The overall intensity l of the pattern in the rectangular study region is l"/0.0076. (B) the O-ring
statistic (solid circles), giving the local neighborhood density of the pattern at scale r and confidence envelopes (open circles).
Confidence envelopes are the highest and lowest O(r) of 99 randomizations of the pattern over the study region. The solid line gives
the intensity l of the pattern in the rectangular study region. The bold line is the average of the O-ring function for scales r"/7#/30.
The ring width was one cell unit. (C) Ripley’s L-function with confidence envelopes (open circles) constructed in the same way as in
(B). The bold line is the approximation Eq. 21 of the L-function for g"/1.34 at scales r"/7#/30.

Fig. 4. The memory in the accumulative Ripley’s L-function. (A) No virtual aggregation (i.e. g"/1 in Eq. 21), but true second-order
effects up to scale r1, and no second-order effects for scales r!/r1. The different curves show Eq. 21 for initial values L(r1)"/#/4,
#/3,#/2,#/1, 0, 1, 2, 3, and 4. The bold line gives the L-function without second-order effects (i.e. K(r)"/pr2). (B) Virtual aggregation
(g"/1.2 in Eq. 21), true second-order effects up to scale r1, and no second-order effects for scales r!/r1. The bold line gives the L-
function without second-order effects (i.e. K(r1)"/pgr1

2). Initial values of L(r1) same as in (A).
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test for the non-accumulative O-ring statistic, however,
will indicate the expected weak aggregation. Our first
example (Fig. 3) illustrates this point. The analysis using
the O-ring statistics reveals a non-random pattern at
scales r"/1!/6 due to second-order effects, and virtual
aggregation at smaller scales r"/7!/30 with an approxi-
mately constant local neighborhood density O(r)"/gl"/

0.0103 (bold line in Fig. 3B) well above the overall
intensity l"/0.0076 of points in the entire study region
(dashed line in Fig. 3B). As expected, the Monte-Carlo
test shows only weak evidence for aggregation. However,
Ripley’s L indicates strong aggregation at scales r"/7!/

30 with an increasing L-function (Fig. 3C). This result
shows that a frequent (implicit) assumption of second-
order analysis (univariate Ripley’s K will reveal under
large-scale heterogeneity the true second-order proper-
ties at small scales) is wrong. As we have shown,
undetected virtual aggregation leads to an erroneous
interpretation of the univariate L-function at smaller
scales.

Delineating homogeneous sub-regions

Evidently, the pattern shown in Fig. 3A contains gaps at
the edges of the rectangular study region that cause
virtual aggregation (Fig. 3B). Now we apply the method
for detecting gaps to this pattern. Because our method
involves estimation of an empirical frequency distribu-
tion P̂k that gives the number of points in overlapping
moving windows, we need to account for the non-
independence of the sample. We achieve this by means
of a two-step procedure. In a first step we select a large
moving window to detect and remove all cells which are
clearly gaps, and in a second step we delineate the gaps
more closely by selecting a small moving window and by
repeating the analysis with the small moving window for
the remaining area only.

In the first step we select a large moving window (R"/

50, one fourth of the width of the study region) to
capture large-scale variation in the intensity l(x, y), and
to remove cells which are clearly gaps we select addi-
tionally a small value p0"/0.01.

Figure 5D shows the empirical frequency distribution
P̂k for moving windows with R"/50 and the correspond-
ing theoretical Poisson distribution. Figure 5D indicates
that there are many cells that have in their 50-cell
neighborhood less points as expected under CSR, and
Eq. 14 yields kmin"/41. We remove 5253 cells (:/14% of
the rectangular area) corresponding to moving windows
containing less than kmin"/41 points (dark gray area in
Fig. 5A), and 6 isolated points. The overall density in the
new (irregularly shaped) study region is l1"/(287#/6)/
(198%/191#/5253)"/0.0086. In the second step we
delineate the gaps more closely using the minimal size
Wmin of a moving window that can discriminate a gap

from a empty plot possible under CSR (Eq. 16). For a
small p0"/0.0025 and l"/0.0086 we obtain Wmin"/694
cells which corresponds to a radius Rmin"/15. Figure 5E
shows the resulting empirical frequency distribution P̂k

for moving windows with R"/15. Visual inspection of
Fig. 5E suggests removing cells whose moving window
contains none or one point. Those are 4368 cells (light
gray area in Fig. 5A) and 4 isolated points. Figure 5F
shows the empirical and frequency distribution P̂k for
the remaining points in the new study region that now
approximates the theoretical frequency distribution
reasonably well. The overall density in new study region
is l2"/(287#/10)/(198%/191#/9621)"/0.0098, and in
total we remove 25.4% of the initial rectangular study
region (thus, c"/0.746).

To test the approximation of the O-ring statistics
(O(r)"/gl) and the L-function (Eq. 21) under virtual
aggregation we compare the predicted and the observed
L and O-functions. Our prediction under virtual aggre-
gation is O(r)"/gl"/0.0102 (g"/1/c"/1.34, l"/0.0076).
The mean value of Ô(r); taken for scales r"/7!/30, yields
0.0103 which is in excellent accordance with our predic-
tion (Fig. 3B). The predicted L-function Eq. 21 under
virtual aggregation and second-order effects (L̂(r"7)"/

1.58) is in good accordance with the observed L̂ (Fig.
3C), however, at scales r!/15 the observed L̂ is lower
than the predicted. Clearly, this is because for larger
scales a notable proportion of the circles used for
calculation of the K-function overlap the gap, and
consequently L̂(r) drops.

After detecting gaps we repeated the second-order
analyses, but performed the analyses only in the homo-
geneous sub-region (Fig. 5A), thus excluding the gaps
and the 10 isolated points. Figure 5B shows that the first-
order effects had a relatively weak impact on the shape
of the O-ring function (Fig. 3B, 5B). The only important
differences are that the weak aggregation at scales r!/6
disappeared and that aggregation at r"/5, 6 became
weak or non-significant. In contrast, removal of first-
order effects had a marked impact on the shape of L̂(r)
and on the confidence envelopes (Fig. 3C, 5C). The
analysis performed in the initial rectangular study region
indicated strong aggregation for r!/5 (Fig. 3C) while the
analysis in the homogeneous sub-region shows that the
pattern is random at scales r!/5. The results of both
second-order statistics are now in accordance, except for
the clear differences caused by the cumulatively property
of Ripley’s L at scales r"/2, and 4.

The pattern in Fig. 3A constitutes a large patch with
no points in the edges of the rectangular study region.
Now we study the effect of the opposite pattern, a
random distribution of points within a rectangular study
region, but with a large gap in the middle (Fig. 6A). We
created this pattern by distributing points at random
over a 101%/101 cell grid and then removing all points
inside a circle with radius 25 cells in the center of the
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square study region (Fig. 6A). At smaller scales (i.e. rB/

18) only few rings around the points of the pattern
overlap the gap (those in the immediate neighborhood of
the gap), thus producing virtual aggregation with an
above-mean density of points inside these rings (hori-
zontal line in Fig. 6B). However, as r increases, more and
more rings overlap the gap, causing the decline in Ô(r)
(Fig. 6B). Therefore, for scales r!/18 we observe the
opposite phenomenon to virtual aggregation, ‘‘virtual
repulsion’’ with below-mean density of points inside the
rings. From Eq. 19 it follows that the L-function will first
increase due to virtual aggregation, and then drop
because of virtual repulsion. This prediction is con-
firmed by the L-function analysis shown in Fig. 6C.
Virtual aggregation produces only marginal significant
departures from CSR when tested with the O-ring
statistic (Fig. 6B), however, the test with Ripley’s K

indicates marginal aggregation for scales r"/1, but
clearly significant aggregation for scales 8!/24 (Fig. 6C).

Next we applied our algorithm to delineate the gap.
Application of the same method as described above
resulted in moving windows with radius R"/25, and
R"/9 in the first, and the second step, respectively, and
visual inspection of Fig. 6G suggests removing cells with
empty moving windows. Fig. 6H shows that the empiri-

cal and expected frequency distribution P̂k for the new
study regions are in good accordance. The overall
density in the initial rectangular study region is l2"/

195/(101%/101)"/0.019. The overall density in new
study region is l2"/(195#/1)/(101%/101#/1800)"/

0.0231, and in total we removed 18% of the initial
rectangular study region (i.e. c"/0.82). Our prediction
under virtual aggregation is O(r)"/g l"/0.0232 (g"/1/
c"/1.21, l"/0.019) in the O-ring statistic, and a linear

Fig. 5. Delineating the homogeneous sub-region of the study region. (A) Map showing the point pattern and the regions of the
study region that were removed during the two-step procedure. Dark grey: cells removed in first step of algorithm to detect gaps
(R"/50, p0"/0.01, kmin"/41), light gray: cells removed in second step (R"/15, kmin"/2), white: homogeneous study region. White
dots are isolated points that are removed. (B) The O-ring statistic (solid circles) with confidence envelopes (open circles). Confidence
envelopes are the highest and lowest O11(r) of 99 randomizations of the remaining 277 points of the pattern over the sub-region
where the pattern is homogeneous (white region in Fig. 5A). The solid horizontal gives the mean intensity of the pattern. The ring
width was one cell. (C) Ripley’s L-function with confidence envelopes (open circles) constructed in the same way as in B. (D)
Observed number of points within circular moving windows of radius R"/50 (solid circles) taken from the initial rectangular study
region, and the expected number under overall homogeneity (solid line). The vertical line indicates kmin"/41. (E) Observed number
of points within moving windows of radius R"/15 (solid circles) after removing the first gaps (i.e. taken from the white and light-
grey region in Fig. 5A), and the expected number under homogeneity (open circles). (F) Same as E, but after excluding all gaps (i.e.
taken only for the white area in Fig. 5A).
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increase of the L-function with slope (
ffiffiffi

g
p

#1)"/0.11.

The mean value of the estimated Ô(r) (Fig. 6B), taken for
scales r"/1!/18, yields 0.023, and linear regression of

L̂(r); taken for scales r"/1!/19 (Fig. 6C), yields a slope of
0.097. Both values are in excellent accordance with our
prediction.

Repeating the second-order analyses in the homoge-
neous sub-region (Fig. 6A) finally confirmed the known
randomness of the pattern and the linear increase of the
L-function at smaller scales and the linear decrease at

larger scales caused by the gap disappears (Fig. 6D, E).
Also, the observed and the expected frequency distribu-
tion of points in circles of radius R"/10 (Fig. 6H) were

in accordance. Note that our two examples are extreme
cases for illustrative purpose and that in cases where a
pattern contains several gaps of different sizes the first-
order effects of virtual aggregation or repulsion may be

obscured because their scales overlap. For analysis of
point patterns that show more complicated first-order
heterogeneity, we exemplify the use of null models based

Fig. 6. Analysis of a random pattern with a gap in the center. (A) The pattern was created by randomly distributing 195 points over
a 101%/101 cell study region, but preventing them to penetrate a circular area in the center (solid circle). Dark grey region: cells
removed in the first step of the algorithm for detecting gaps (R"/25, p0"/0.01, kmin"/23), light gray: cells removed in the second
step (R"/9, kmin"/1), white: irregularly shaped, but internally homogeneous study region. (B) The O-ring statistic for the pattern
(solid circles) with confidence envelopes (open circles) using the highest and lowest O(r) from 99 replicates of a null model where the
points of the pattern were randomly distributed over the entire rectangular study region. The horizontal line shows the mean density
l"/0.0191 of the pattern the original rectangular study region and the bold line indicate virtual aggregation with above-mean
density. The ring width was one unit. (C) Ripley’s L-function for the pattern (solid circles) with confidence envelopes (open circles)
constructed in the same way as in (B). The bold line indicates virtual aggregation with a linearly increasing segment of the L-
function. (D) The O-ring statistic (solid circles) with confidence envelopes (open circles) calculated for the irregularly shaped study
region (white area in A) and a CSR null model. The solid line gives the mean density l"/0.0236 of the pattern in the irregularly
shaped study region. (E) Ripley’s L-function of the pattern (solid circles) with confidence envelopes (open circles) constructed in the
same way as in (D). (F) Observed number of points within moving windows of radius R"/25 (solid circles) taken from the initial
rectangular study region, and the expected number under overall homogeneity (solid line). (G) Observed number of points within
moving windows of radius R"/9 (solid circles) after removing the first gaps (i.e. taken from the white and light-grey region in A),
and the expected number under homogeneity (open circles). (H) Same as (E), but after excluding all gaps (i.e., taken only for the
white area in A).
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on heterogeneous Poison processes as tool for analyzing
second-order effects despite of the presence of first order
heterogeneity.

Null models accounting for full first-order
heterogeneity

In this section we illustrate the numerical imple-
mentation of the heterogeneous Poisson null model
for the two patterns shown in Fig. 3A and 6A. First
we calculated the approximate first-order intensity
l̂(x; y) of the patterns shown in Fig. 3A (Fig. 7A) and
6A (Fig. 7B) using Eq. 15 and moving windows of R"/

15 and R"/10 cells, respectively. We randomized the
points of the patterns in accordance with l̂(x; y):
Note that the shape of Ô(r) and L̂(r) does not change
under this null model compared to CSR (Fig. 3B,
7D, Fig. 3C, 7C, Fig. 6B, 7F, and Fig. 6C, 7E). How-

ever the confidence envelopes are different because
the points of the patterns are randomized in accordance
with different null models, and the confidence en-
velopes for Ripley’s L are not symmetric to L"/ 0
(Fig. 7C, E) since the underlying null model differs
from CSR.

The results of the second order statistics are in
accordance with results from the previous section where
we removed the gaps and analyzed the second-order
properties of the patterns only within the homogeneous
sub-region. For the pattern shown in Fig. 3A Ripley’s L-
function indicates regularity at scales r"/1!/3, and
random distribution at scales r!/3 (Fig. 5C, 7C). The
O-ring statistic indicates regularity at scales r"/1#/2, a
significant aggregation peak at scale r"/4 and random
distribution at all other scales (Fig. 5B, 7D). For the
random pattern with a gap in the center (Fig. 6A) both,
the L- and the O-function, reveal the known randomness
of the pattern (Fig. 7E, F).

Fig. 7. Second-order statistics and null models based on a heterogeneous Poisson process using the moving window estimate Eq. 15
for approximation of the heterogeneous first-order intensity. (A) Approximation of the first order intensity for the pattern shown in
Fig. 3A with a circular moving window of R"/15 units. Light gray indicates zero density, and increasing shading indicates
increasing density. (B) Approximation of the first order intensity for the pattern shown in Fig. 6A with a circular moving window of
R"/10 units. (C) Ripley’s L-function for the pattern Fig. 3A (solid circles) with confidence envelopes (open circles) using the highest
and lowest O(r) from 99 replicates of a null model where the points of the pattern were randomized in accordance to the first-order
density shown in (A). (D) O-ring statistic for the pattern Fig. 3A with confidence envelopes constructed in the same way as in (C).
The ring width was one unit. (E) Ripley’s L-function for the pattern Fig. 6A constructed in the same way as in (C). (F) O-ring
statistic for the pattern Fig. 6A constructed in the same way as in (E).
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Discussion

In this article, we reviewed current methods in point
pattern analysis based on second-order statistics. Over
the past 20 years, many useful approaches and methods
of analysis utilizing second-order statistics have been
explored by statisticians interested in spatial point
processes, and point pattern analysis based on Ripley’s
K has been increasingly used in ecology. However, the
full range of methods that is available has not been
adopted widely by ecologists, and important problems
and pitfalls in their application have not been fully
recognized. This might be largely due to the added
complexity that is required for implementation of non-
standard methods, and due to a lack of appropriate
software for their application. Critical issues in point
pattern analysis are (1) use of an appropriate method of
edge correction, (2) use of specific methods to account
for heterogeneity if the pattern is univariate, and (3)
selection of an appropriate null model that is used in
assessing the observed data, especially for bivariate
patterns.

To make methods of second-order statistics more
accessible to ecologists we reviewed (1) analytical and
numerical methods for implementation of two comple-
mentary second order statistics, Ripleys’s K-function
and the O-ring statistic, (2) methods for edge correction,
(3) a variety of specific null models for univariate and
bivariate patterns, and (4) methods to account for
heterogeneity in univariate patterns. Additionally we
provide our own software that was implemented follow-
ing the numerical approach described in the methods
section. This software enables ecologists to use most of
the standard and non-standard methods reviewed here.

The O-ring statistic

We advocate the use of the O-ring statistic or that of the
closely related pair-correlation function, which were
both proposed two decades ago by Galiano (1982),
and Ripley (1981), respectively, but almost forgotten in
later years. We find it quite curious that Ripley’s K,
which is only one of two potential options of second-
order statistics, is widely used while the other option, the
pair-correlation function, has rarely been used. One
explanation would be that the pair-correlation function
g(r) is conceptually too close to spatial correlograms and
variograms (Upton and Fingleton 1985). Another ex-
planation is that pair-correlation function has been
neglected because it is deterministically related to
Ripley’s K (Eq. 4): lg(r) is based on the frequency
distribution of distances r between all pairs of points
while lK(r) is based on the corresponding accumulated
frequency distribution.

The scientific question at hand may require the use of
the accumulative statistic or the use of the non-accumu-

lative statistic. For example, if the negative effect of
competition is hypothesized to work only up to a certain
distance, an accumulative statistics may be appropriate.
On the other hand, if we ask for ‘‘critical scales’’ in
patterns which may e.g. be related to biological processes
such as competition, facilitation or seed dispersal we
may wish to use a non-cumulative second-order statistic
where the result at smaller scales does not bias the result
at higher scales. For example, the pattern analyzed in
Fig.3Fig. 5 is the spatial distribution of Syagrus yatay
palm trees in the National Park El Palmar in the
Argentinean province of Entre Rı́os (588 17? Long. W;
318 50? Lat. S), a temperate savanna ecosystem (W.
Batista and M Lunazzi, unpubl.). The species S. yatay
reproduces exclusively by sexually produced seeds, which
are then dispersed by gravity or animals. The analysis
with the O-function, which measures local neighborhood
density at different spatial scales, revealed two critical
scales: scales r"/1 m with significantly less neighboring
trees than expected by a random distribution, and r"/4
m with a significantly greater density of trees than
expected by a random distribution (Fig. 5B). In contrast,
the cumulative L-function shows significant repulsion at
scales r"/1#/2 m, and no aggregation at scale r"/4 m
(Fig. 5C). Thus, Ripley’s K- or L-function may actually
obscure the existence of critical scales. From the results
(Fig. 5B) we may derive the hypothesis that the observed
pattern is caused by superposition of the processes of
competition and seed dispersal that operate at different
spatial scales. Seed-dispersal by gravity may cause a
distribution of seeds that is inversely related to the
distance from the stem. However, strong competition in
the neighborhood of a tree counteracts and causes
overall repulsion at these scales. Therefore, the critical
scale r"/4 m may arise because competition is relatively
weak for scales r]/4 m but seeds are still aggregated at
this scale.

The O-ring statistic is a probability density function
with the straightforward biological interpretation of a
local neighborhood density, which is more intuitive than
an accumulative measure (Stoyan and Penttinen 2000).
Because it is a scale-dependent density function, the O-
ring statistic is only marginally biased by virtual
aggregation (caused by larger gaps in the study region
that violate the assumption that the pattern is homo-
geneous). As we have shown, virtual aggregation can be
a considerable problem in univariate analysis using
Ripley’s K. Violation of homogeneity, however, can be
detected by visualizing the O-ring statistic. Thus, using
the O-ring statistic as complement to Ripley’s K may be
especially useful in situations where possible violation of
homogeneity is not obvious from visual inspection of the
pattern.

The number of points of a pattern may constrain the
use of the O-ring statistic. Because the accumulative
Ripley’s K uses all pairs of points that are less than
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distance r apart, and the O-ring statistic only all pairs of
points a distance r apart, the sample size for calculation
of the K-function is considerably larger than that for
calculation of the O-ring statistic. The use of too narrow
rings or analysis of patterns with very few points will
produce jagged plots of the O-ring statistic that make
them difficult to interpret. This is less an issue for the
accumulative K-function.

The grid approximation

The common analytical approach following Eq. 5 uses
all pairs of points to derive an estimator for the K and
the O-function, and edge correction is based on geo-
metric formulas that sometimes requires quite complex
algorithms and can be computationally intensive. Using
an underlying grid simplifies the implementation of
second-order statistics considerably. However, one may
argue that a grid will reduce the accuracy of K̂(r) and
Ô(r) at small scales r because all information below the
grain of the grid (the cell size) will be lost. This is true
since introducing a grid is equivalent to the introduction
of small measurement errors (sensu Freeman and Ford
2002). However, all point measurements are subject to
measurement error (Freeman and Ford 2002) and if the
grid exactly accommodates the measurement error,
accuracy is not lost. If the number of points of the
pattern is large or if the density of points is low, selection
of a small grid size will make the analysis slow and one
may wish to select a larger grid size to increase
computational speed. Freeman and Ford (2002) investi-
gated in detail which magnitude of measurement errors
affects the accuracy of Ripley’s L-function, and their
results can be used to assess a possible loss of accuracy
due to a larger grid size. Addition of measurement error
reduced the amplitude of L̂(r) and caused the corre-
sponding maximum value of L̂(r) to move to larger
distances. This effect was strongest when the scale of
errors approached the scale of the underlying pattern.
Because of this, inhibition is more sensitive than
clustering, and small clusters are more sensitive than
large clusters (Freeman and Ford 2002).

Recommendations

We now synthesize our review into a number of
recommendations. Note that point-pattern analysis is a
descriptive analysis. Even if a particular null model
describes your pattern well, it is not appropriate to
conclude that the mechanism behind the null model is
the mechanism responsible for your pattern. Other
mechanisms may lead to exactly the same pattern.
However, point-pattern analysis helps to characterize
your pattern and to put forward hypotheses on the
underlying mechanisms that should be tested in subse-

quent steps in the field. Therefore, we propose an
exploratory step-by-step protocol for second-order ana-
lysis. Because there are fundamental differences between
univariate and bivariate analysis, we will treat them
separately.

Univariate second-order analysis

1) Visualize the pattern, define a preliminary study
region and plot L̂(r) and Ô(r):

2) If the size of your biological objects cannot be
neglected (i.e. they are large and do not overlap)
you might combine a hard-core null model with the
null models suggested in the next steps. In this case
Ô(r) will be very low for scales up to the size of the
objects.

3) If there is no indication for strong aggregation
(clearly visible clusters in the pattern or a Ô(r)
typical for virtual aggregation) use CSR as the null
model for detecting aggregation or inhibition.
Virtual aggregation (large scale clustering) is in-
dicated by a constant Ô(r) over a range of scales,
and at this range Ô(r) is well above the intensity l
of the pattern (Fig. 3B). Smaller-scale clustering is
indicated by a steep linearly increasing L̂(r) at
smaller scales (Eq. 18). The cluster size is slightly
below the value of r where L̂(r) is maximal.

4) If step (3) indicates virtual aggregation (i.e. large
clusters) exclude the gaps (or use smaller rectan-
gular sub-regions) and apply CSR only in the sub-
region without gaps (or in the smaller plot). Think
about a biological explanation for the heterogeneity
encountered. Perhaps there are obstacles in the
study region, or clear environmental heterogeneity
that prevent points from occurring in the gap.

5) If there is a biological explanation for the hetero-
geneity encountered in step (3) (e.g. clear differ-
ences in soil), you might map the environmental
factor and use this map to obtain an intensity
function of a heterogeneous Poisson process.
Otherwise, you can use the pattern itself to estimate
the non-constant first-order intensity l using the
moving window estimator Eq. 15 for simulation of
a heterogeneous Poisson process null model. Alter-
natively, if there is a surrogate pattern for the
environmental heterogeneity (e.g. the locations of a
different, more common plant species that is
hypothesized to be subject to the same environ-
mental factor), use univariate random labeling as
the null model for testing whether your pattern is
more (or less) clustered than the control.

6) If there is no obvious environmental heterogeneity,
your pattern may be a realization of a cluster
process. Use L̂(r) to obtain rough (initial) estimates
of the parameter r and s of a Neyman-Scott
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process and fit the parameters using the methods
given in Diggle (1983), Batista and Maguire (1998),
and Dixon (2002). Use the estimated parameters r
and s to simulate confidence envelopes for the
Neyman-Scott process null model. Clearly, there
are a number of other point-processes you might fit
to your data. However, because of small number of
points and noisy data, you might not be able to
statistically separate them.

7) If there is small-scale regularity and larger scale
clustering, the expected L-function for the Ney-
man-Scott process needs to consider the small-scale
regularity because the L-function is accumulative
and conserves at larger scales some ‘‘memory’’ on
the small-scale regularity (Fig. 4). This can be done
analogously to Eq. 20. Alternatively, one may use
the pair-correlation function (which has no mem-
ory) to fit the unknown parameters r and s.

Bivariate second-order analysis

The bivariate analysis is more complicated than the
univariate analysis because there are two basic null
models (independence and random labeling) and be-
cause null models from the univariate case can be
combined in several ways to obtain specific bivariate
null models. Therefore, it is especially important to
define the biological question, the hypothesis, and the
biological circumstances carefully to be able to find an
adequate null model.

1) Visualize the patterns and perform univariate
analysis of both patterns. Define the basic null
hypothesis (i.e. independence vs random labeling).
Otherwise, if both patterns were probably created
by the same stochastic process random labeling is
appropriate, whereas independence is appropriate if
the patterns might be created by independent
processes.

2) A common environmental factor affected both
patterns in the same way: In this case, the two
patterns are heterogeneous and are merged in joint
clusters. Under this circumstance, a random label-
ing null model is appropriate. However, there is a
heterogeneous Poisson process null model with the
same effect: keep the locations of pattern 1 fixed
and randomize pattern 2 according to a hetero-
geneous Poisson process. An appropriate intensity
function can be constructed using a moving
window estimate of the joined intensity of pattern
1 and pattern 2, but with a relatively small radius
R.

3) The two patterns were created by different pro-
cesses: In this case, you might use the toroidal shift
null model, i.e. keeping pattern 1 fixed and shifting

the whole of pattern 2 by treating the study region
as a torus. Of course, this works only if you have a
rectangular study region.

4) The two patterns were created by different pro-
cesses related to different heterogeneous environ-
mental factors: The appropriate null model for this
hypothesis is to keep one pattern fixed and preserve
the larger-scale heterogeneity of the other pattern,
i.e. use a heterogeneous Poisson process to simulate
pattern 2, and vice versa. An appropriate intensity
function can be constructed using a moving
window estimate of the intensity of pattern 2. The
radius R of the moving window decides how closely
you mimic the heterogeneity of pattern 2.

5) The two processes were linked: An example for this
possibility is a clustered distribution of seedlings
around adult trees e.g. due to a limited range of
seed dispersal. In this case, the locations of trees
have to be preserved, and the seedlings can be
randomized following a Neyman-Scott process null
model where the parents are given through the
pattern of adult trees. In this case, only one
parameter of the cluster process has to be fit since
the intensity r is given through the density of
pattern 1. Note that a similar effect of clustering of
seedlings around trees may arise if both patterns
are strongly impacted by the same environmental
factor.
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